鳥取県におけるマイクロロングを利用した ネギのセル成型育苗法

鳥取県園芸試験場 弓浜砂丘地分場

岩 降 白 裕 研究員

1. はじめに

鳥取県は西日本地域で最大の白ネギ 産地であり、栽培面積は約900haとなっ ている。作型は収穫時期によって、春 ネギ、夏ネギ、秋冬ネギに分けられ、 周年出荷されている (図1)。近年、 生産者の高齢化や後継者不足、輸入ネ ギの急増による価格低迷が問題となっ ている。そのため、機械化一貫体系に よる省力・低コスト生産の確立が望ま れており、その一つに機械移植技術の 導入があげられる。当試験場では,機

械移植に対応したセル成型苗の安定生産の確立に 取り組んでいる。ここでは、本県におけるマイク ロロングトータル201(以下,マイクロロング) を利用したネギのセル成型育苗法について、作業 の順を追って紹介する。

2. 全自動ネギ移植機

本県では、みのる社とヤンマー社の全自動ネギ 移植機が普及している(写真1)。移植機の種類 によりセルトレイ(以下、トレイ)の規格が異な り、トレイは、200、220および448穴のものが使

写真1. 全自動ネギ移植機(みのる式2条タイプ)

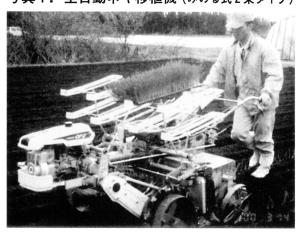
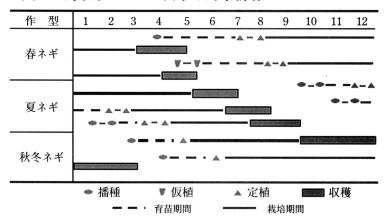



図1. 鳥取県における白ネギ周年栽培

用されている。各移植機で特徴があるが、共通し て「そろった健苗」を作ることが安定多収を実現 するために重要である。

3. セル成型苗の安定生産

1) セル成型苗の育苗方式

一般にネギのセル成型育苗には、ベンチ上にト レイを設置する方法(以下、ベンチ育苗)とトレ イを地面上に設置する方法(以下,地床育苗ある いは直置育苗)がある。本県のセル成型苗を利用 した周年栽培では、播種は10月上旬から5月上旬 まで行われ、 $2 \sim 3$ ヶ月の育苗期間を要した後、 移植は12月上旬から6月下旬まで行われている (図1)。つまり、秋から翌年の初夏にかけて育苗 が行われており、季節に合わせた育苗管理が必要 となる。また、本県は日本海側に位置し、冬期間 は日照量が少なく、育苗ハウス内の温度が上がら ない。このため、ベンチ育苗は、セル内温度が不 安定となり、発芽率の低下や生育不良を生じるこ とがある(表1)。そこで、ベンチ育苗に代わる 方法を検討したところ、地面に排水性のあるシー トを敷き,その上にセルトレイを設置する方法 (以下,シート育苗)が有効であることを明らか

にした。本県では、地床育苗とシート育苗の二通 りを行っており、いずれの方法でも育苗専用の緩 効性肥料であるマイクロロングを使用している。

表1. 育苗方式による苗立ち本数(1999)

セルトレイ	1 穴当たり苗立ち本数(本/穴)			
設置方法	I	II	平均	
ベンチ育苗	3.7	3.9	3.8	
直置育苗	4.2	4.3	4.3	

注) 200穴トレイを使用し、1 穴当たり 5 粒播種とした。 播種は、10月 3 日に行い、12月 6 日に調査した。

2) 播種作業

マイクロロングは、育苗専用に開発されたコーティング肥料で、肥効期間により40日、70日、100日タイプに分けられ、多くの野菜・花のセル成型育苗で利用されている。ネギのセル成型育苗では、各移植機メーカーから販売されている培養土に100日タイプを混和している。培養土 1ℓ 3たりの添加量は、200、220穴トレイで10g、448穴トレイで15gである。播種作業は、全自動播種機を利用しコーティング種子を播く方法、播種板(アクリル板を加工したもの)を利用し裸種子を播く方法の二通りがあり、生産場面で使い分けられている。1穴当たりの播種粒数は、200、220穴トレイで3~5 粒、448穴トレイで3 粒播種である。

3) 育苗管理

①トレイの設置

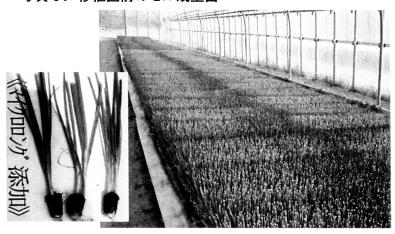
220,448穴トレイは、それ自体が育苗箱の役割を果たしており、苗床に根切りネットを張りトレイを設置する地床育苗、あるいは、床面にスーパーラブシートを敷きトレイ 写真:

面にスーパーラブシートを敷きトレイを設置するシート育苗を行っている。 200穴トレイは、水稲用育苗箱を使用 し床面に設置する直置育苗を行っている。

② 灌水と温度管理

トレイ設置後は、培養土が十分湿るように2ℓ/トレイの灌水を行う。ネギの発芽適温は15~25℃であり、季節に合わせて温度管理をする必要がある。低温期には、ポリエチレンフィルムのべたがけ、トンネル被覆して温度を高

め、一方、高温期には、シルバーフィルムのベタ 張り、寒冷紗被覆して温度を下げる。べたがけは、 出芽がそろってから除去する。出芽後は、培養土 が乾かない程度に適量灌水し、ハウス内の換気に つとめ、立枯れ病などの発生に注意する。


③ 剪葉と追肥

草丈が15~20cmになると葉先が垂れてくるようになり、中が蒸れて病害が発生したり、苗が絡み合ったりする。これを防ぐため剪葉を行い、葉鞘の太い、直立した苗にする。剪葉には、動力剪葉機、反転式剪葉機を用いる(写真 2)。草丈15~20cmで1回目の剪葉を行い、草丈12~15cmに刈る。その後は、7~10日間隔で草丈15cmに刈る。通常は、3回ほどで移植できるセル成型苗となるが(写真 3)、季節によっては 4~5回必要となることもある。マイクロロング100日タイプを添加しているので、基本的に追肥は行わないが、高温期の育苗では、肥効の低下がみられることが

写真 2. 反転式剪葉機での作業

写真3. 移植直前のセル成型苗

あり、この場合、窒素量200ppmの液肥を 1 ℓ / トレイ、5日間隔で潅注処理する。

4. 移植および初期生育

機械移植は根鉢形成が重要となる。育苗日数は、 春、秋の適温期で50~60日、冬の低温期で70~80 日要する。移植時の注意点は、草丈15cmに剪葉 しておくこと、培養土が乾燥すると根鉢が崩れや すくなるので適湿に保つことである。

根を地中に伸長させる地床育苗は、育苗管理が 容易である反面、移植時に断根することが初期生 育に影響を及ぼすと指摘されている。筆者らは. 培養土にマイクロロングを添加することで、地床 育苗においてセル内根量が増加し、活着および初 期生育が良好となることを明らかにした(表2, 表3)。

ネギのセル成型育苗は、移植までに2~3ヶ月 と長く、育苗期間中に肥料切れを起こすと液肥施 用を行っても、生育を回復するまでに日数を要す る。培養土にマイクロロングを添加することで、 育苗期間中の肥料切れによる生育遅延を回避でき ると考えられる。また、100日タイプの緩効性肥 料であり、残存した肥料成分は移植後の活着肥と して生育の促進効果があると考えられる。

5. おわりに

マイクロロングを利用したセル成型育苗は有効 な技術で、冬季の低温・寡日照条件下でもセル成 型苗の安定生産が可能となった。これに伴い、本 県では全自動ネギ移植機の普及が進みつつあり, 省力・低コスト生産が期待される。

なお. ネギのセル成型育苗の詳細は, 農業技術 体系に総説があるので参照していただきたい。

表 2. マイクロロングが苗の生育および活着に及ぼす影響(2001)

マイクロ	苗の生育		移植10日後		移植20日後	
1176	乾物重(<u> </u>	乾物重		乾物重	
ロング	地上部	地下部	抵抗値 (N/セル)	(g/100本)	11 - 421 - 1211	(g/100本)
添加区	4.8	0.44	11.4	11.9	16.0	17.6
無添加区	3.6	0.30	8.6	8.2	13.3	12.3

- 注1)448穴トレイを用い、5月10日播種、地床育苗、6月29日に移植した。苗床は、N-P-Kを15-15-12g/m²施用した。
- 注2) 地下部は,セル内の根量を示す。引き抜き抵抗値は,プッシュ・プルゲージを用いて測定した。

表 3. マイクロロングが初期生育に及ぼす影響

(2001)

マイクロ	草丈	葉鞘径	生重
ロング	(cm)	(mm)	(g)
添加区	29.6	5.5	4.4
無添加区	25.9	4.8	3.0

注) 耕種概要は,表2と同じ。

引用文献

- 1) 金光幹雄:セル成型育苗と病害虫対策, 17-24、日本植物防疫協会、2001、
- 2) 川城英夫:農業技術体系野菜編8-①, 基 221-231, 農山漁村文化協会, 1999.
- 3) 白岩裕隆・鹿島美彦:近畿中国四国農業研 究, 2, 37-41, 2003.

チッソ旭の肥料で豊かな実り! ーティング肥料 硝酸系肥料のM.1 ロング。ハイコントロール。 LPコート® マイスタ・ ニュートリコート® 打ち込み肥料 グリーンバイル。 緩効性肥料 CDU* 泡状肥料 あさひポーラス® (チッソ旭肥料株式会社